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Chemical modification is one of the most important research
fields in the fullerene chemistry. 1,3-Dipolar cycloaddition plays
an important role in the preparation of modified fullerenes for
application in medicinal chemistry and materials science. Up to
now various 1,3-dipoles including azomethine ylides, diazo com-
pounds, azides, nitrile oxides, nitrile ylides, nitrile imines, pyrazo-
linium ylides, and carbonyl ylides have been reported to react with
fullerenes.1 Although fulleropyrrolidines have been by far the most
studied and versatile derivatives obtained from 1,3-dipolar cyc-
loadditions, other fullerene-fused pentagonal heterocyclic rings,
such as fulleroisoxazolines or fulleropyrazolines, are also known
to show appealing chemical, electrochemical, and photophysical
properties. For example, fulleroisoxazolines undergo an efficient
retro-cycloaddition reaction in the presence of an excess of a die-
nophile and Cu(II) catalysis, which can be selectively used in the
presence of malonate or pyrrolidine cycloadducts.2 The electro-
chemical properties of the fulleroisoxazoline and fulleropyrazoline
compounds in which a heteroatom is directly linked to the C60 cage
were investigated to show the same or better acceptor character
than C60. It is different from fulleropyrrolidines which usually exhi-
bit a decrease in electron affinity with respect to the parent C60.3

Fulleroisoxazolines or fulleropyrazolines have been readily ob-
tained by addition of nitrile oxides or nitrilimine to [60]fullerene
in moderate yields through different methods. Meier firstly re-
ported the addition reaction of C60 with nitrile oxides which was
generated through dehydration of nitroalkanes with phenylisocya-
nate and Et3N.4 The most commonly used method for the prepara-
tion of fulleroisoxazolines or fulleropyrazolines includes two steps:
first synthesis of hydroximinoyl halides or hydrazonoyl halides
from aldoxime or hydrazone using NCS or NBS and then reacting
with fullerene through dehydrohalogenation in the presence of or-
ganic base.5 An alternative procedure involved the generation of
corresponding dipole from hydrazones under microwave irradia-
tion.6 It should be noted that this microwave process does not oc-
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cur upon conventional heating. Isoxazoline-fused fullerenes can
also be prepared from the reactions of [60]fullerene with N-silyl-
oxynitrones, formed from nitoalkene and Me3SiCl/Et3N, after acid
treatment.7 Irngartinger also reported that the nitrile oxides gener-
ated from ester of glycine hydrochloride using NaNO2.8 Despite so
many ways for preparation of fulleroisoxazolines or fulleropyrazo-
lines, the scope of these protocols is limited by two-step processes,
basic and anhydrous condition. Herein, we developed a convenient
method to achieve fulleroisoxazolines or fulleropyrazolines by a
one-step reaction of [60]Fullerene with aldoximes or hydrazones
mediated by (diacetoxyiodo)benzene.

Hydrazone has a vinyl C–H and an N–H bond and aldoxime has
a vinyl C–H and an O–H bond. Their structures are similar to enam-
ine and enol, respectively (Fig. 1). It was reported that the
Mn(OAc)3�2H2O can mediate the oxidative radical cycloaddition
of b-keto esters, beta-diketones, and b-enamino compounds to
C60.9 Considering the structure similarities, we presumed that this
reaction may also be applicable to hydrazone or aldoxime sub-
strates. The first substrate examined was benzaldoxime 1a. When
a mixture of C60 (36.0 mg), benzaldoxime 1a (1 equiv), and
Mn(OAc)3�2H2O (1 equiv) was stirred in 20 mL toluene for 24 h at
room temperature, no reaction occurred. While the reaction tem-
perature was raised to 100 �C, the desired product 2a was isolated
in 13% yield along with several by-products after 4 h of stirring.

The result was not so satisfying. Then we considered using
PhI(OAc)2 as an oxidant, which has been used as a common and
unique oxidant in many reactions,10 to substitute for Mn(OAc)3�
2H2O. In earlier documents PhI(OAc)2 has also been used in the
enamine hydrazone enol oxime

Figure 1.
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cycloaddition reaction of nitrile oxide or nitrilimine with electron
deficient olefins such as ethyl acrylate or acrylonitrile.11 Das has
reported the hypervalent iodine-mediated interaction of aldoxime
with activated alkene including Baylis–Hillman adducts and intra-
molecular [3+2] reaction for reparation of benzopyrano and furo-
pyrano-2-isoxazoline derivatives.12 Gan has reported the
PhI(OAc)2-mediated reaction of amino acid ester with C60, from
which pyrrolidino[60]fullerene and aziridino[60]fullerene could
be formed selectively controlled by iodine.13 Most recently, Ciufo-
line reported the PhI(OAc)2-mediated tandem oxidative dearoma-
tization of phenols/intramolecular nitrile oxide cycloaddition
sequences leading to useful synthetic intermediates.14

To our satisfaction, when a mixture of C60 (36.0 mg), ben-
zaldoxime 1a (1 equiv), and PhI(OAc)2 (1 equiv) was stirred in
20 mL toluene for 100 min at room temperature (Table 1), the de-
sired fulleroisoxazolines 2a was obtained in good yield (51%). The
process was greatly accelerated by using PhI(OAc)2 compared to
using Mn(OAc)3�2H2O. This is a simple method of constructing
isoxazoline cycle on fullerene through 1,3-dipolar reaction. The
Table 1
Results of the reaction of C60 with aldoximes or hydrazones promoted by (diacetoxyiodo)
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a All reactions were performed in toluene at room temperature; molar ratio of C60:1
b Isolated yield.
condition was so mild and convenient that we hope to discover
the scope of this methodology.

In order to extend the utility of this reaction, we carried out the
reaction using different kinds of aldoximes (1b–h) under the same
condition (Scheme 1). The results, summarized in Table 1, showed
that all the reactions proceeded smoothly whether the R1 was aryl,
furyl, alkyl, or ester group, and gave moderate to good yields in
short time at room temperature.15 The yield of the reaction is high-
er when R1 is a phenyl than when R1 is an aliphatic, furyl, or ester
benzene at room temperaturea,15

Time (min) Yield b (%) Recovered C60 (%)

100 51 42

90 46 43

90 44 39

90 42 54

90 37 55

90 15 70

170 28 59

90 17 74

60 34 55

45 20 72

35 36 55

35 19 70

60 27 65

or 3:PhI(OAc)2 = 1:1:1.
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group. The electronic property of the substituent group on the phe-
nyl ring had little influence on the reaction. It is an easy and effi-
cient method to prepare fulleroisoxazolines directly from
aldoximes.

Encouraged by these results, we further extended the
PhI(OAc)2-mediated 1,3-dipolar reaction to hydrazones 3a–e and
C60 (Scheme 1). When a mixture of C60 (36.0 mg), hydrazones
3a–e (1 equiv), and PhI(OAc)2 (1 equiv) was stirred in 20 mL tolu-
ene for a designated time at room temperature, fulleropyrazolines
4a–e could also be obtained (Table 1). Yields were fair to good. The
substituent group R2 or R3 on the phenyl ring had little influence
on the yield. This makes it clear that PhI(OAc)2 is a very good oxi-
dant to mediate the 1,3-dipolar reaction of C60 with hydrazones or
aldoximes. A plausible mechanism for the generation of nitrile oxi-
des and nitrile imines is illustrated in Scheme 2.

All of the known products were confirmed by comparison of
their spectral data with those reported in the literature. The iden-
tification of new compounds 2c–e, 2h, and 4b was fully confirmed
by their MS, 1H NMR, 13C NMR, FT-IR, and UV–vis spectra. Take 2c
as an example. The MALDI-TOF mass spectrum of 2c showed the
molecular ion peak at m/z 853. The 1H NMR spectrum of 2c dis-
played two doublets at 7.31 and 8.03 ppm for the phenyl ring
and a singlet at 2.44 ppm for the CH3 group. In the 13C NMR spec-
trum of 2c there were 34 peaks in the range of 126–148 ppm due
to the sp2 carbons of the C60 skeleton and phenyl ring and two
peaks at about 72 and 102 ppm for the two sp3 carbons of the
C60 along with a peak at 153.18 ppm for the C@N, fully consistent
with the Cs symmetry of its molecular structure. The UV–vis spec-
trum of 2b exhibited a peak at 427 nm, which is a diagnostic
absorption for the mono-adduct of C60 at the 6:6-junction. The
other new compounds (2c–e, 2h, and 4b) were characterized in a
similar way.

In summary, we have explored a useful procedure for the syn-
thesis of fulleroisoxazolines/fulleropyrazolines from fullerene and
aldoximes/hydrazones mediated by PhI(OAc)2, which represents
a significant improvement over existing methods. It is practical
with many advantages such as one-step reaction, no demanding
anhydrous operation, short reaction time, and wide utility.
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